866 research outputs found

    Semi-blind Bayesian inference of CMB map and power spectrum

    Full text link
    We present a new blind formulation of the Cosmic Microwave Background (CMB) inference problem. The approach relies on a phenomenological model of the multi-frequency microwave sky without the need for physical models of the individual components. For all-sky and high resolution data, it unifies parts of the analysis that have previously been treated separately, such as component separation and power spectrum inference. We describe an efficient sampling scheme that fully explores the component separation uncertainties on the inferred CMB products such as maps and/or power spectra. External information about individual components can be incorporated as a prior giving a flexible way to progressively and continuously introduce physical component separation from a maximally blind approach. We connect our Bayesian formalism to existing approaches such as Commander, SMICA and ILC, and discuss possible future extensions.Comment: 11 pages, 9 figure

    Full-sky CMB lensing reconstruction in presence of sky-cuts

    Full text link
    We consider the reconstruction of the CMB lensing potential and its power spectrum of the full sphere in presence of sky-cuts due to point sources and Galactic contaminations. Those two effects are treated separately. Small regions contaminated by point sources are filled in using Gaussian constrained realizations. The Galactic plane is simply masked using an apodized mask before lensing reconstruction. This algorithm recovers the power spectrum of the lensing potential with no significant bias.Comment: Submitted to A&

    Practical wavelet design on the sphere

    Get PDF
    We address the question of designing isotropic analysis functions on the sphere which are perfectly limited in the spectral domain and optimally localized in the spatial domain. This work is motivated by the need of localized analysis tools in domains where the data is lying on the sphere, e.g.{} the science of the Cosmic Microwave Background. Our construction is derived from the localized frames introduced by Narcowich, Petrushev, Ward, 2006. The analysis frames are optimized for given applications and compared numerically using various criteria

    Foreground component separation with generalised ILC

    Full text link
    The 'Internal Linear Combination' (ILC) component separation method has been extensively used to extract a single component, the CMB, from the WMAP multifrequency data. We generalise the ILC approach for separating other millimetre astrophysical emissions. We construct in particular a multidimensional ILC filter, which can be used, for instance, to estimate the diffuse emission of a complex component originating from multiple correlated emissions, such as the total emission of the Galactic interstellar medium. The performance of such generalised ILC methods, implemented on a needlet frame, is tested on simulations of Planck mission observations, for which we successfully reconstruct a low noise estimate of emission from astrophysical foregrounds with vanishing CMB and SZ contamination.Comment: 11 pages, 6 figures (2 figures added), 1 reference added, introduction expanded, V2: version accepted by MNRA

    CMB Polarization can constrain cosmology better than CMB temperature

    Full text link
    We demonstrate that for a cosmic variance limited experiment, CMB E polarization alone places stronger constraints on cosmological parameters than CMB temperature. For example, we show that EE can constrain parameters better than TT by up to a factor 2.8 when a multipole range of l=30-2500 is considered. We expose the physical effects at play behind this remarkable result and study how it depends on the multipole range included in the analysis. In most relevant cases, TE or EE surpass the TT based cosmological constraints. This result is important as the small scale astrophysical foregrounds are expected to have a much reduced impact on polarization, thus opening the possibility of building cleaner and more stringent constraints of the LCDM model. This is relevant specially for proposed future CMB satellite missions, such as CORE or PRISM, that are designed to be cosmic variance limited in polarization till very large multipoles. We perform the same analysis for a Planck-like experiment, and conclude that even in this case TE alone should determine the constraint on Ωch2\Omega_ch^2 better than TT by 15%, while determining Ωbh2\Omega_bh^2, nsn_s and Ξ\theta with comparable accuracy. Finally, we explore a few classical extensions of the LCDM model and show again that CMB polarization alone provides more stringent constraints than CMB temperature in case of a cosmic variance limited experiment.Comment: 14 pages, 16 figure

    CMB and SZ effect separation with Constrained Internal Linear Combinations

    Full text link
    The `Internal Linear Combination' (ILC) component separation method has been extensively used on the data of the WMAP space mission, to extract a single component, the CMB, from the WMAP multifrequency data. We extend the ILC approach for reconstructing millimeter astrophysical emissions beyond the CMB alone. In particular, we construct a Constrained ILC to extract clean maps of both the CMB or the thermal Sunyaev Zeldovich (SZ) effect, with vanishing contamination from the other. The performance of the Constrained ILC is tested on simulations of Planck mission observations, for which we successfully reconstruct independent estimates of the CMB and of the thermal SZ.Comment: 7 pages, 3 figures, submitted to MNRA

    Bayesian model comparison in cosmology with Population Monte Carlo

    Full text link
    We use Bayesian model selection techniques to test extensions of the standard flat LambdaCDM paradigm. Dark-energy and curvature scenarios, and primordial perturbation models are considered. To that end, we calculate the Bayesian evidence in favour of each model using Population Monte Carlo (PMC), a new adaptive sampling technique which was recently applied in a cosmological context. The Bayesian evidence is immediately available from the PMC sample used for parameter estimation without further computational effort, and it comes with an associated error evaluation. Besides, it provides an unbiased estimator of the evidence after any fixed number of iterations and it is naturally parallelizable, in contrast with MCMC and nested sampling methods. By comparison with analytical predictions for simulated data, we show that our results obtained with PMC are reliable and robust. The variability in the evidence evaluation and the stability for various cases are estimated both from simulations and from data. For the cases we consider, the log-evidence is calculated with a precision of better than 0.08. Using a combined set of recent CMB, SNIa and BAO data, we find inconclusive evidence between flat LambdaCDM and simple dark-energy models. A curved Universe is moderately to strongly disfavoured with respect to a flat cosmology. Using physically well-motivated priors within the slow-roll approximation of inflation, we find a weak preference for a running spectral index. A Harrison-Zel'dovich spectrum is weakly disfavoured. With the current data, tensor modes are not detected; the large prior volume on the tensor-to-scalar ratio r results in moderate evidence in favour of r=0. [Abridged]Comment: 11 pages, 6 figures. Matches version accepted for publication by MNRA

    Estimation of cosmological parameters using adaptive importance sampling

    Full text link
    We present a Bayesian sampling algorithm called adaptive importance sampling or Population Monte Carlo (PMC), whose computational workload is easily parallelizable and thus has the potential to considerably reduce the wall-clock time required for sampling, along with providing other benefits. To assess the performance of the approach for cosmological problems, we use simulated and actual data consisting of CMB anisotropies, supernovae of type Ia, and weak cosmological lensing, and provide a comparison of results to those obtained using state-of-the-art Markov Chain Monte Carlo (MCMC). For both types of data sets, we find comparable parameter estimates for PMC and MCMC, with the advantage of a significantly lower computational time for PMC. In the case of WMAP5 data, for example, the wall-clock time reduces from several days for MCMC to a few hours using PMC on a cluster of processors. Other benefits of the PMC approach, along with potential difficulties in using the approach, are analysed and discussed.Comment: 17 pages, 11 figure
    • 

    corecore